# Self-organizing tree models for image synthesis

A method for generating realistic models of temperateclimate trees and shrubs

> Jan Havlíček Attila Hencz

# Introduction

 Assumption (most methods): trees have a repetitive, recursive structure (branching pattern → form of a tree)

- However: distribution of buds is similar in all trees
- Many buds do not develop into lasting branches
- Arrangement of branches locally irregular, but wellbalanced as a whole

- Self-organizing character of tree development
- Every bud and branch compared with alternatives for the same role in overall tree structure
- Integrate elements of development:
  - local control of branching geometry,
  - competition of buds and branches for space or light,
  - and regulation of this competition through an internal signaling mechanism

# The modeling method

## The modeling method



- Creating a tree structure by simulating its development
- Cycle of interactions between the tree and its environment

## Growth cycle: 1-Calculation of the environmental input



- Estimate the availability or quality of the space surrounding each bud (a number Q) and the optimal direction of shoot growth (a vector V).
- 2 simple methods
  - Space colonization
  - Shadow propagation

## **Environmental input: Space colonization**

- Branches ← only from buds
- Each bud has a...
  - spherical occupancy zone (radius ρ)
  - conical perception volume (angle  $\theta$  and distance r)
- Available space:



- Init.: set of pre-generated marker points (e.g. uniform dist.)
- In each iteration:
  - markers deleted from occupancy zones
  - buds then compete for the remaining points  $|A|>0 \rightarrow Q=1$ ,  $|A|=0 \rightarrow Q=0$ ; V=norm'd sum of norm'd marker vecs

## **Environmental input: Shadow propagation**

- To estimate: exposure of each bud to light
- Space → grid of voxels with "shadow value" s
  - initially s=0,
  - then:  $\Delta s = ab^{-q}, q = 0, 1, ..., q_{max}, a > 0 \& b > 1$  user-defined)



 Light exposure Q of a sample bud in a voxel: Q=max(C-s+a,0), C-constant representing full exposure
 Growth dir. V: (a) neg. gradient of s; (b) voxel with lowest s among neghboring in the perception volume of the bud

## Growth cycle: 2-Calculation of bud fate



- Env. input (avail. space/light) → which buds produce how large shoots
- "Apical" control (suppression of lateral branch growth)
- 2 simple resource alloc. models:
  - Extended Borchert-Honda (BH) model
  - Priority model

## Bud fate: Extended Borchert-Honda model



- Purely endogenous distribution of a growth-inducing resource to buds
- $\frac{v_l = v \frac{(1-\lambda)Q_l}{\lambda Q_m + (1-\lambda)Q_l}}{\sum}$  New: distribution by amount of light received by the buds
  - 2 passes:
    - Light (Q) collection toward the "root"
    - Redistribute toward the branches
  - Internodes:
    - Number: n = floor(v)
    - Length: I = v/n

wmin-

#### **Bud fate: Priority model**



- Collect resources (light, #buds)
- Order buds by priority (avg.)
  - Apical/No control (perm./dyn.)
- Distribute resources

$$v_i = v \frac{Q_i w_i}{\sum_{j=1}^{N} Q_j w_j}, i = 1, 2, ..., N.$$

#### Growth cycle: 3-Addition of new shoots





- New shoots issued in direction of buds
- Modified by optimal growth direction (V) and by tropism vector  $\vec{d}_{shoot} = \vec{d}_{def.} + \xi \vec{V} + \eta \vec{T}$

## Growth cycle: 4-Shedding of branches



- Important component of crown selforganization
- When ratio of internodes / Q in a branch falls below threshold, drop the branch
- Space col. problem: Q binary

#### **Growth cycle: 4-Shedding of branches**



## Growth cycle: 5-Calculation of branch diameter



- Important factor affecting natural appearance
- Pipeline model (each leaf contributes, toward "root")
- Branching point: d<sup>n</sup>=d<sup>n</sup><sub>1</sub>+d<sup>n</sup><sub>2</sub>
  n user defined (e.g. 2-3)
- (!) d stays after shedding (memory)

#### **Interactive control**

- Tree modification: bending & pruning
- Environment control:
  - space col.: modifying the marker point set with 3D proc. Brush)
  - shadow prop.: change light
- Enables more precise control over shape while keeping natural appearance



- Simple to implement (couple hundred lines of L+C and C++ for L-studio
- Tree complexity: 1000(young)-700 000(old) metamers
- Voxel grid: 200 x 200 x 200
- Markers: interactive: 1-1000; non-int.: may reach 1000000

#### Performance

• Times:

| Figure | Steps | Internodes | Gen. time |
|--------|-------|------------|-----------|
| left   | 106   | 700 000    | 82 sec.   |
| center | 90    | 642 000    | 60 sec.   |
| right  | 68    | 225 000    | 21 sec.   |



# Conclusion



- Self-organization simplifies the modeling process
  - well-balanced branch distributions emerge automatically
- Realistic (biologic roots)
- Simple, only few variables
- Interactive modeling using environment, not tree itself

Overall, the proposed method makes it possible to generate a wide range of highly realistic trees, and control their form using a small number of parameters or interactive manipulations.

## Eye candy: sample pictures

